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Osteoarthritis (OA) is a multidimensional health problem and 
a common chronic disease.36 Functional limitations, the absence 
of curative treatments, and the considerable cost to society result 
in a substantial impact on quality of life.76 Historically, OA has 
been described as whole joint and whole peri-articular diseases 
and as a systemic comorbidity.9,111 OA consists of a disruption of 
articular joint cartilage homeostasis leading to a catabolic path-
way characterized by chondrocyte degeneration and destruction 
of the extracellular matrix (ECM). Low-grade chronic systemic 
inflammation is also actively involved in the process.42,92 In clini-
cal practice, mechanical pain, often accompanied by a functional 
decline, is the main reason for consultations. Recommendations 
to patients provide guidance for OA management.22, 33,49,86 Evi-
dence-based consensus has led to a variety of pharmacologic and 
nonpharmacologic modalities that are intended to guide health 
care providers in managing symptomatic patients. Animal-based 
research is of tremendous importance for the study of early di-
agnosis and treatment, which are crucial to prevent the disease 
progression and provide better care to patients.

The purpose of animal-based OA research is 2-fold: to assess 
the impact of the OA disease (pain and function) and to study the 

efficacy of a potential treatment.18,67 OA model species include 
large animals such as the horse, goat, sheep, and dog, whose 
size and anatomy are expected to better reflect human joint 
conditions. However, small animals such as guinea pig, rabbit, 
mouse, and rat represent 77% of the species used.1,87 In recent 
years, mice have become the most commonly used model for 
studying OA. Mice have several advantageous characteristics: a 
short development and life span, easy and low-cost breeding and 
maintenance, easy handling, small joints that allow histologic 
analysis of the whole joint,32 and the availability of genetically 
modified lines.108 Standardized housing, genetically defined 
strains and SPF animals reduce the genetic and interindividual 
acquired variability. Mice are considered the best vertebrate 
model in terms of monitoring and controlling environmental 
conditions.7,14,15,87 Mouse skeletal maturation is reached at 10 
wk, which theoretically constitutes the minimal age at which 
mice should be entered into an OA study.64,87,102 However, many 
studies violate this limit by testing mice at 8 wk of age.

Available models for OA include the following (Table 1): 
spontaneous naturally occurring OA (C57BL/6, BALB/c, STR/
ort or genetically modified mice); chemically-induced (mainly 
mono-iodoacetate [MIA] injection); noninvasive (high fat diet or 
obesity-induced) consistent with the metabolic human OA;32,111 
physical activity and exercise induced OA; noninvasive mechani-
cal loading (repetitive mild loading and single-impact injury); and 
surgically induced (meniscectomy models or anterior cruciate 
ligament transection). The specific model used would be based 
on the goal of the study.7 For example, OA pathophysiology, OA 
progression, and OA therapies studies could use spontaneous, 
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genetic, surgical, or noninvasive models. In addition, pain studies 
could use chemical models. Lastly, post-traumatic studies would 
use surgical or noninvasive models; the most frequently used 
method is currently destabilization of the medial meniscus,32 
which involves transection of the medial meniscotibial ligament, 
thereby destabilizing the joint and causing instability-driven 
OA. An important caveat for mouse models is that the mouse 
and human knee differ in terms of joint size, joint biomechanics, 
and histologic characteristics (layers, cellularity),32,64 and joint 
differences could confound clinical translation.10

In humans, the lack of correlation between OA imaging 
assessment and clinical signs highlights the need to consider 
the functional data and the quality of life to personalize OA 
management. Clinical outcomes are needed to achieve 2 main 
goals: to assess the impact of the OA in terms of pain and func-
tion and to study the efficacy of treatments.65 Recent reviews 
offer few practical approaches to mouse functional assessment 
and novel approaches to OA models in mice.7,32,67,75,79,83,87, 

100,120 This review will focus on static and dynamic clinical as-

Table 1. Mouse models of osteoarthritis.

Models Pros Cons

Spontaneous Wild type  
mice7,9,59,67,68,70,72,74,80,85,87,115,118,119,120

-	� Model of aging phenotype
-	� The less invasive model
-	� Physiological relevance: mimics human 

pathogenesis
-	� No need for technical expertise
-	� No need for specific equipment

-	� Variability in incidence
-	� Large number of animals at baseline
-	� Long-term study: Time consuming (time 

of onset: 4 -15 mo)
-	� Expensive (husbandry)

Genetically  
modified mice2,7,25,40,50,52,67,72,79,80, 

89,120

-	� High incidence
-	� Earlier time of onset: 18 wk
-	� No need for specific equipment
-	� Combination with other models

-	� Time consuming for the strain 
development

-	� Expensive 

Chemical- 
induced

Mono-iodoacetate 
injection7,11,46,47,60,66,90,91,101,128

-	� Model of pain-like phenotype
-	� To study mechanism of pain and  

antalgic drugs
-	� Short-term study: Rapid progression (2-7 wk)
-	� Reproducible
-	� Low cost

-	� Need for technical expertise
-	� Need for specific equipment
-	� Systemic injection is lethal
-	� Destructive effect: does not allow to study 

the early phase of pathogenesis

Papain injection66,67,120 -	� Short-term study: rapid progression
-	� Low cost

-	� Need for technical expertise
-	� Need for specific equipment
-	� Does not mimic natural pathogenesis

Collagenase injection7,65,67,98 -	� Short-term study: rapid progression  
(3 wk)

-	� Low cost

-	� Need for technical expertise
-	� Need for specific equipment
-	� Does not mimic natural pathogenesis

Non-invasive High-fat diet  
(Alimentary induced obesity 
model)5,8,43,45,57,96,124

Model of metabolic phenotype
No need for technical expertise
No need for specific equipment
Reproducible

Long-term study: Time consuming (8 wk–9 
mo delay)
Expensive 

Physical activity and exercise 
model45,73

Model of post traumatic phenotype
No need for technical expertise

Long-term study: time consuming  
(18 mo delay)
Expensive
Disparity of results

Mechanical loading models  
Repetitive mild loading models 
Single-impact injury model7,16,23,24, 

32,35,104,105,106

Model of post traumatic phenotype
Allow to study OA development
Time of onset: 8-10 wk post injury
Noninvasive

Need for technical expertise
Need for specific equipment
Heterogeneity in protocol practices
Repetitive anesthesia required or ethical issues

Surgical Ovariectomy114 Contested.
Meniscectomy model7,32,63,67,87 Model of post traumatic phenotype

High incidence
Short-term study: early time of onset  
(4 wk from surgery)
To study therapies

Need for technical expertise
Need for specific equipment
Surgical risks
Rapid progression compared to human

Anterior cruciate  
ligament transection  
(ACLT)7,39,40,61,48,67,70,87,126

Model of posttraumatic phenotype
High incidence
Short-term study: early time of onset  
(3-10 wk from surgery)
Reproducible
To study therapies

Need for technical expertise
Need for specific equipment
Surgical risks
Rapid progression compared to human

Destabilization of medial  
meniscus (DMM)7,32,39,40

Model of post traumatic phenotype
High incidence
Short-term study: early time of onset  
(4 wk from surgery)
To study therapies
The most frequently used method

Need for technical expertise
Need for specific equipment
Surgical risks
Rapid progression compared to human

Since all animal models have strengths and weaknesses, it is often best to plan using a number of models and techniques together to combine 
the results.
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sessment of OA using automatic and noninvasive emerging 
techniques (Table 2).

Outcomes Measured to Assess  
Symptomatic OA

OA signs in mice comprise complex interactions between pain 
and dysfunction. Because pain cannot be directly measured in 
rodents, methods have been developed to quantify “pain-like” 
behaviors.30 Mice should be clinically assessed both before and 
after OA induction or administration of treatment both to ac-
count for habituation and to establish a baseline for subsequent 
comparisons.79 All outcomes are summarized in the Table 2. All 
static testing is based on pain assessment. Static measurements 
refer primarily to an assessment off evoked pain. Dynamic 
measurements require a monitoring of the mouse activity, which 
can be spontaneous or evoked.

Static measurements. Static assessments of pain are one way 
to assess symptomatic OA. Rodents are particularly useful for 
statis measurements due to their small size and easy manipula-
tion. However, in contrast to rats, mice are more active, which 
can make static assessments more difficult.83

One static test is the used of Von Frey filament to identify 
mechanical/tactile allodynia.17 Calibrated nylon filaments of 
various thickness (and applied force) are pressed against the 
skin of the plantar surface of the paw in ascending order of 
force.83,90 The stimulus should lead to a rapid withdrawal 
response. After a training and habituation period, latency to 
paw withdrawal and force exerted are recorded.100 The lowest 
amount of force inducing a response is the paw withdrawal 
threshold (PWT), expressed in grams.63 As in sham-operated 
mice, mice with a partial medial meniscectomy had a consist-
ent decrease of the ipsilateral PWT at day 7 after surgery (from 
0.56g to 0.45g).61 However, as compared with sham-operated 
mice, PWT remained low until day 56 in mice with meniscec-
tomy, after which it fell from 0.45g to 0.24g. The effect of OA 
induction leads to an increase of allodynia with a clear decrease 
of withdrawal threshold.61 The Von Frey filament test sensitive 
with regard to analgesia testing in OA.123

The knee extension is another test used to assess pain in 
mice with OA.56,90,100,127 Various techniques can be considered. 
The knee can be extended on both the intact and the affected 
side and the number of vocalizations, indicating discomfort, 
evoked in 5 extensions can be counted.100 This is a relevant 
clinical measure because OA patients experience loss of knee 
range of motion that leads to discomfort.67,97 A surgically in-
duced OA model created by resection of the medial collateral 
ligament and the medial meniscus in 8 wk old C57BL/6 male 
mice showed a significant impairment of knee extension start-
ing from the third month after surgery; this difference from 
the control group was maintained until the sixth month.82 This 
study used passive extension range of the operated knee joint 
under anesthesia, measured the maximal and minimal angle of 
the mouse knee joint, and obtained results consistent with the 
Osteoarthritis Research Society International OARSI scoring, 
showing significant OA development in the operated mice.82 
The reduction of extension angle leads to static limitations and 
also affects dynamic results.

The hotplate is a thermal sensitivity test.3,100 The latency of 
nociceptive reaction is measured by measuring PWT. After 
cruciate ligament transection, OA led to a longer PWT of mice 
on a hotplate, starting from 4 wk onward.109 Eight weeks after 
surgery, the response time in operated mice was approximately 
7 s as compared with 4 s in the sham group.

Another global reflexive static test is neuromuscular screening 
using the cotton swab test. A cotton swab that is brought into 
contact with eyelashes, pinna, and whiskers should induce a 
withdrawal or twitching response.2 If not, reflexive behavior will 
be viewed as abnormal, indicating a behavioral characteristic 
of pain that can be associated with induced OA.

Righting ability can also be used as a general test The mouse is 
placed on its back and the time taken to regain upright posture 
is assessed and can be scored as normal, delayed, or abnormal.2

Dynamic measurements. Spontaneous activity. Biomechanical 
and functional assessments allow evaluation of the functional 
consequences of deficiencies or disabilities related to OA. 
Spontaneous cage activity can be measured automatically.32 
This LABORAS (Laboratory Animal Behavior Observation 
Registration and Analysis System) records objective normal 
activity and OA-induced changes in locomotion (distance), 
climbing (hanging from a wire cage), feeding, grooming, rear-
ing (standing on hind legs), head shakes, and nest-making 
as measures of behavior in mice.12,83,100 To use this system, 
cages must be arranged on a specific platform, which can be 
time-consuming, and the results can be skewed by handling 
the cages.121 As compared with human observation, software 
converts mouse movement into a data set that can be obtained 
and analyzed easily.122

The open field test consists of locomotor analysis with paw 
print assessment.27,109 The test is performed in an open space 
that mice can explore.109 Distance traveled, average walking 
speed, and rest time are related to horizontal locomotor activ-
ity.113 Some studies have assessed vertical locomotor activity 
by measuring rearing.113 Chronic pain leads to withdrawal and 
hypo-activity. Even if human observation introduces subjectiv-
ity, spontaneous pain behavior may be more clinically relevant 
than is evoked pain.83

The gait analysis or catwalk test is a method to indirectly 
assess pain. Automated quantitative gait analysis requires 
special equipment to measure the intensity of the paw contact 
area.32 OA causes gait changes and a smaller footprint area.109 
Gait analysis includes velocity, stride frequency and length, 
symmetry, and step width.109 Parameters related to interlimb 
coordination can also be measured objectively. Pain can cause 
compensatory changes in joint load shifting, and the automated 
gait analysis system can assess body weight redistribution to 
a portion of the paw surface that is associated with pain.2,95,100 
Computerized gait analysis provides nonbiased pain assess-
ment. Gait analysis should include spatiotemporal, kinetic, and 
kinematic parameters.69

Voluntary wheel running has been used to assess pain in 
rodent. Data collection is completely automated, and the experi-
menter is not in the room during the assessment.26 However, 
multiple activity cages need individual randomization before 
the experiment.

Burrowing can also be evaluated. This has been done with 
the MIA model of OA to assess pain-related behavior and anal-
gesic efficacy.13 Burrowing is an innate behavior and is reduced 
in rodents experiencing pain.13 Bilateral MIA injection in rats 
impairs burrowing behavior.13 The burrowing method has 2 
phases: first, social facilitation during which rats are placed in 
pairs in a cage for 2 h on 2 consecutive days with a measurement 
of the amount of sand burrowed, and second placing a rat alone 
in the cage for 30 min per day and determining the average 
amount burrowed over 3 d to provide a baseline value for bur-
rowing. Burrowing evaluation could also be useful in mice but 
the method must be optimized for mice before it can be used 
experimentally.121 Digital video recordings can also be used to 
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assess facial grimace in rats and mice, which is not specific to 
OA but can be used to assess pain.71,88,116,117

Automated home-cage monitoring provides activity informa-
tion directly from the home cage using electrical capacitance 
sensing technology (CST) of an electronic board placed under 
the home cage.55 The digital ventilated cage system (DVC) 
(Tecniplast S.p.A, Buguggiate (VA), Italy) records spontaneous 
activity using 12 electrodes spread as 3 × 4 grids in the cages. 
Electrodes continuously detect electrical capacitance every 250 
ms during both light and dark phases directly from the home 
cage rack. This nondisruptive capacitive-based technique with 
several advantages including the reduction of animal handling 
and no need to set up an external data collection system.55,99 
The system can collect data from thousands of home cages 
simultaneously; benefits are 2-fold (Figure 1). First, the DVC 
system can analyze mouse behavior global cage activity over 
time. As compared with conventional video metrics, individu-
ally housed mice CST metrics are highly correlated for distance 
walked, average speed, occupation front, occupation rear, and 
activation density. Currently validated DVC metrics are animal 
locomotion index, animal tracking distance, animal tracking 
speed, and running wheel distance and speed or rotation. Ani-
mal locomotion index is correlated with the activity pattern. 
The DVC system can also be used to monitor animal welfare.55 
The system is can detect high activity levels that may signal 
aggression.38 Another use for the DVC system is to analyze 
the bedding status by monitoring increasing moisture due to 
urine and water bottle leakage. The range of capabilities of 
this technology can provide research, husbandry and welfare 
indicators. DVC systems will likely become an essential tool for 
many laboratories in the future.

Challenged activity. Motor dysfunction and indirect pain can 
be assessed using challenged exercises, although learning and 
motivation can mask true functional effects. The rotarod test is 
based on the gradual and continued acceleration of a rotating 
rod onto which mice are placed (Figure 2). Data collected are the 
riding times (the amount of time a mouse stays on the rod before 
falling off) and the speed (from 4 to 40 rpm) at which a mouse 
falls off.2,100,123 Mice are trained for 5 min at a constant speed of 
4 rpm on the rotarod before the experimental trials begin. Each 

trial has a maximum time of 5 min. The trial consists of test-
ing mice for a number of consecutive days (typically 3) with a 
minimum of 30 min intertrial rest.100,109 Rotarod creates a forced 
ambulation and involves motor coordination, balance, pain, 
sensorimotor skills, endurance, memory, and learning skills 
that could be limiting factors for the interpretation of the per-
formance.10,100,109 OA decreases time on the rotarod.82,109 When 
cruciate ligament transection was performed on 8-wk-old male 
FVB/N mice and compared with the preoperative functional 
assessment, mice showed a postoperative motor dysfunction in 
rotarod analysis.109 Those functional changes were linked with 
histologic grading by OARSI; functional decline should occur 
concomitantly with the cartilage degeneration.109

Hind limb and fore grip strength are also challenge exercises 
that are commonly used in OA studies.2,29,79,93 Special equip-
ment automatically measures the grip force of limbs of mice, 
including the peak force and time resistance. The mouse is 

Figure 1. The digital ventilated cage system is an automated home-cage monitoring that continuously records spontaneous activity in the cages. 
The system can collect data from thousands of home cages simultaneously.

Figure 2. The rotarod test is based on a gradual and continued ac-
celeration of a rotating rod onto which mice are placed. Data collected 
corresponds to the riding time (the amount of time each mouse stays 
on the rod before falling off or a passive rotation) and the speed (from 
4 to 40 rpm).
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placed over a base plate in front of a grasping tool (T-shaped 
or trapeze-shaped), and data are recorded. Three successive 
trials administered on the same day test the maximum force 
applied as the mouse is pulled away from the attachment of 
the grasping tool,2 allowing assessment of the effect of OA 
progression or pain medication on muscle strength. Wire hang 
analysis is another way to assess gripping ability, coordina-
tion and balance skills of mice. The measured parameter is 
the latency to fall.109

Discussion
Additional OA research is necessary to meet the health chal-

lenges of patients and OA researchers will continue to need 
innovative models and technology in their studies. Figure 3 
shows outcomes and tools available to study mouse model of 
OA. An animal model should be isomorphic, homologous, and 
predictive. In principle, the animal model should have the same 
signs of disease as humans; the pathophysiology and response 
to treatment should be comparable. At least 3 to 5 OA human 
phenotypes have been described: age-related OA, posttraumat-
ic-OA, metabolic OA, genetic, and pain OA.9,107,111 However, 
interindividual heterogeneity is common among individuals 
with knee OA pain with regard to patient physical performance 
profiles.28 Patient profiles based on physical performance and 
movement-evoked pain were also significantly different in 
psychologic and somatosensory function.28 The identification 
of profiles supports the adjustment of the therapeutic plan to 
individual patients.

OA has a complex physiopathology, and one single animal 
model will not mimic all of the components of the human 
disease.79,87,120 Some mouse models may replicate a phenotype 
without involving all the integrative pathways, and a perfect 
model does not exist. Therefore, the choice of rodent model 
must consider the objective of the study and the nature of the 
outcomes. Because all animal models have strengths and weak-
nesses, the use of several models and techniques considered 
together may provide the most useful results. For example, 
using a prey species as a model can be a weakness because 
prey animals such as rodents may not show obvious signs of 
pain4,79 to order avoid attracting predators. A link between this 
masking behavior and prey position in the food chain is difficult 
to confirm with robust data. In addition, the behavioral and 
functional tests used in OA studies may cause mice stress.6,14 
Several assessments of pain and/or locomotion should be in-
cluded in a study because mice may hide the signs of pain and 
distress. A summary of animal models used to study pain of OA 
with outcome measured longitudinally has been published to 
help promote use of the ARRIVE guidelines and achieve better 
cross-publication comparisons.10,79,112

The 3Rs principles of reduction, refinement, and replacement 
provide a framework for ethical decisions about using animals 
for scientific purposes.53 Refinement should be a constant 
concern of researchers from the point of experimental design 
(by improving animal welfare with appropriate housing and 
handling procedures, minimizing suffering through pain treat-
ment, and terminating animals that reach humane endpoints)94 
until the time of scientific publication (by reporting according 

Figure 3. This figure shows the most recent data on all aspects of OA mouse models to support choice of the best model in terms of objective, 
pathophysiological pathway, surrogate markers of progression, imaging techniques, and functional assessment.
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to the ARRIVE guidelines).112 Consideration of analgesia and 
pain management is also important.15 Both pharmacologic and 
nonpharmacologic measures can be used to manage pain in 
mice with OA. Depending on the procedure, pain medication 
ranging from general anesthesia to analgesics can be admin-
istered before and after surgery in surgical models of OA. In 
addition, refined surgical procedures can be developed. For 
example, the destabilization of medial meniscus model is less 
invasive and considered more homologous to OA in human.39 
Furthermore, assessment of modified surgical methods41, 
such as refining surgical small rodent models of OA for joint 
pathology and pain, indicates that pain behavior is not always 
present despite significant histopathologic changes during 
disease progression.40 This reflects the heterogeneity seen in 
human OA and therefore better mimics the human condi-
tion. Animals and human patients both experience pain as a 
symptom of OA.62 Two arguments are used by animal care and 
ethical committees to promote the use of analgesia. The first 
is that refining surgical models of osteoarthritis in rodents by 
using analgesics alters the pain phenotype but does not alter 
the joint.”41 Second, not using pain alleviating drugs in mice 
might alter the comparability to humans because the majority 
of human patients with OA take medicine for pain.43 We do 
not suggest that pain medication should be administrated in 
all OA studies, but consideration should be given to the issue 
and discussed both with ethical committees and within the 
OA scientific community.

Improved reporting of behavioral preclinical data will 
promote reproducibility.58 Identifying appropriate humane 
endpoints is essential to avoiding unnecessary suffering in 
research animals.14,94 Refinement could be achieved by using 
the earliest possible endpoints.31 The description of endpoints 
in the methods of publications can be improved by adhering to 
the ARRIVE guidelines112 and automated manuscript screening 
software can be used to detect inadequate reporting of meth-
odology.125 In addition, including veterinarians in the research 
design is important.75

Refinement could also benefit from the use of new imaging 
technologies for OA assessment.84 Optimized for small animals, 
these imaging technologies include phase contrast μCT,37,51 
photoacoustic imaging,19,81 and new fluorescent substrates.54,110 
These imaging methods can be used to assess morphologic 
structural changes or molecular disease activity and to track 
the progression of damage in longitudinal studies.78 The ability 
to perform repeated observations on the same animal during 
disease progression can reduce both individual variation (due 
to using the same animal) and the number of animals needed 
(due to avoiding the need to terminate a statistically important 
number of animals at each interim time point). Finally, new 
technologies will allow nonlethal longitudinal monitoring of 
OA progression and support diagnosis, assessment of severity, 
and development of treatments, which are major concerns for 
the human disease.

Application of ethical principles also improves scientific 
knowledge and experimental outputs. Innovations, optimiza-
tion of 3R rule, and scientific objectives are dynamically linked. 
The 3R’s have a positive impact on the reproducibility, reliability, 
and translatability of data from animal studies.77,103 Report-
ing of all the stimuli and conditions the animals experience is 
important because these features may interfere with disease 
development or intervention.64 Pain and pain medications may 
also affect some data outcomes. These features are challenges 
in research fields like OA.

In conclusion, new techniques such as the automated digital 
cage system will be useful to record spontaneous activity from 
thousands of home cages simultaneously and to monitor lab 
conditions. This system will become an essential research tool 
that provides scientific data and saves time. Environmental fac-
tors such as season, humidity, housing cage, time of day, sex, 
order of testing cage mates, mouse genotype, and experimenter 
identity can affect outcomes.20,21 New tools to improve pain as-
sessment in rodents include videography and computational 
approaches but time will be required to assess these new tools.34
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